

Thermochemistry of two calcium silicate carbonate minerals: scawtite, $Ca_7(Si_6O_{18})(CO_3) \cdot 2H_2O$, and spurrite, $Ca_5(SiO_4)_2(CO_3)$

Mineral stability diagram at 25 and 80 °C for CaO-SiO₂-H₂O-CO₂ system

CaCO,

log a_{H,SiO,}

Scientific Achievement

Spurrite-scawtite-CaC O_3 stability diagrams suggest that spurrite forms in strongly oversaturated calcium solutions with a low aqueous silica activity at 25 °C. Scawtite could precipitate in a range of Ca^{2+}/H^+ ratio, high H_2SiO_4 activity and in saturated quartz.

Significance and Impact

scawtite and spurrite may precipitate near caprocks with dissolving silicate minerals, clays, or cement phases. At 80 $^{\circ}$ C relevant to CO₂ sequestration, the expanded scawtite and spurrite stability fields suggest their favorable formation over calcite under moderate calcium concentration and pH by direct carbonation reactions

Research Details

Calcium silicate carbonate minerals, scawtite, $Ca_7(Si_6O_{18})(CO_3) \cdot 2H_2O$, and spurrite, $Ca_5(SiO_4)_2(CO_3)$, were synthesized and characterized. Their enthalpies of formation were determined by high temperature oxide melt solution calorimetry

Yin-Qing Zhang, A.V. Radha, Alexandra Navrotsky Geochimica et Cosmochimica Acta 115 (2013) 92–99

15

-7

Thermochemistry of two calcium silicate carbonate minerals: scawtite, $Ca_7(Si_6O_{18})(CO_3) \cdot 2H_2O$, and spurrite, $Ca_5(SiO_4)_2(CO_3)$

Structures

Spurrite is an orthosilicate having separate layers of silicate and carbonate groups due to their different Lewis-base strengths. scawtite composed of a [CaO6-8] polyhedral sheet linked by Si6O18 rings and isolated CO3 groups parallel to (101)

Enthalpies of formation

The enthalpy of formation from the oxides is -689.5 ± 14.3 kJ/mol for scawtite and -455.1 ± 9.7 kJ/mol for spurrite, and the enthalpy of formation from the elements is -11564.5 ± 16.8 kJ/mol for scawtite and -5845.5 ± 10.9 kJ/mol for spurrite.

Powder XRD patterns of (A) Scawtite and (B) spurrite

Thermochemistry of two calcium silicate carbonate minerals: scawtite, $Ca_7(Si_6O_{18})(CO_3) \cdot 2H_2O$, and spurrite, $Ca_5(SiO_4)_2(CO_3)$

Thermodynamic equilibrium constants of the chemical reactions used to construct log–log diagram of Ca²⁺/H⁺ activity vs. H₄SiO₄ activity in the CaO–SiO₂–H₂O–CO₂ system.

Reaction	log relation	log K at T	
		25 °C	80 °C
$Ca_7(Si_6O_{18})CO_3 \cdot 2H_2O(s) + 4H_2O(l) + 12H^+(aq) = 6Ca^{2+}(aq) + 6H_4SiO_4(aq) + CaCO_3(s)$	6 log $(a_{\text{Ca2+}} / a_{\text{H+}}^{2}) =$ log $K - 6$ log a_{H4SiO4}	98.1	82.6
$Ca_5(SiO_4)_2CO_3$ (s) + 8H ⁺ (aq) = 4Ca ²⁺ (aq) + 2H ₄ SiO ₄ (aq) + CaCO ₃ (s)	$4 \log (a_{\text{Ca2+}} / a_{\text{H+}}^{2}) = \log K - 2 \log a_{H4\text{SiO4}}$	77.1	64.2
$Ca_7(Si_6O_{18})CO_3 \cdot 2H_2O (s) + 4H_2O (l) + 4H^+ (aq) = Ca_5(SiO_4)_2CO_3 (s) + 4H_4SiO_4 (aq) + 2Ca^{2+} (aq)$	$2 \log (a_{\text{Ca2+}} / a_{\text{H+}}^{2}) = \log K - 4 \log a_{\text{H4SiO4}}$	21.0	18.4

